Модуль таңбасы бар тригонометриялық функциялардың графигін салу

Сабақтың тақырыбы: Модуль таңбасы бар тригонометриялық  функциялардың графигін салу

Сабақтың түрі: Жаңа тақырыпты қосымша электрондық  оқулықты пайдаланып түсіндіру.

Сабақтың білімділік мақсаты: Қарапайым тригонометриялық  функциялардың  графиктері туралы оқып білген білімдерін тиянақтап   және модуль таңбасы бар тригонометриялық функциялардың  графиктерін салу  дағдысын қалыптастыру;

Сабақтың дамытушылық мақсаты: Оқушылардың ойлау ой-өрісін дамыту,жаңашылдық, ғылым мен  техниканың жетістіктерін пайдалана білу.

Сабақтың тәрбиелік мақсаты: Еңбекке баулу.Сыйластыққа және ұйымшылдыққа, алдарына қойған мақсаттарына жетуге  тәрбиелеу.

Сабақтың оқыту әдісі.  Сын тұрғысынан ойлау технологиясы.

Сабақта қолданылатын стратегия:Ой қозғау, ой толғау,ой қорыту.

Сабақтың көрнекілігі:Таблица, электронды оқулық, интерактивті тақта ,есептер жинағы.

Сабақтың барысы: а)Ұйымдастыру сәті.Сынып оқушыларын сабаққа дайындығын ,қатысын шолып өту және еркін отыруларын сұрау.

ә)Интерактивті тақтадан «Ой қозғау . Нені білу керек?»(слайдтар) .Тригонометриялық функцияларды ата.

Анықталу облысын білеміз бе?

Тригонометриялық функциялардың графигін еске түсірейік.

Тригонометриялық функциялардың пероидтарын ата.

б) Жаңа сабақты түсіндіру. «Ой толғау .Нені білгіміз  келеді?»(электронды оқулық)

Модуль таңбасы бар тригонометриялық функциялардың графиктерін салу тәртібімен таныстыру.

в) Мәреге жету. «Ой қорыту»  Жаңа сабақты бекітуге есептер шығарту.

г) Қорытындылау. Сұрақ: Бүгінгі тақырып бойынша алдымызға  қойған мақсатқа жете алдық па?

Сабақ несімен ұнады?Не ой түйдіңіз? Қысқаша эссе жазыңыз.

д) Бағалау.(Не үшін қойылды, айтып кету.)

  1. Өткен тақырыпты біле ме?

2.Жаңа сабаққа қатысу белсенділігі.

3.Теорияны практикада қолданыуы.

е)  Үйге тапсырма  № 8.48 .  y=   2 |cosx| — 1№ 8.78.  y= │tg(2х+1) │ М.И.Сканави

 

Тригонометриялық функциялардың графигін салу.

 

а) у= |sinx|  функциясының графигін салыңдар.

Бұл функцияның графигін салу үшін  у=sinx функцияның x ≥ 0 болғандағы графигін өзгеріссіз қалдырып, оны x<0бөлігіне Оу осіне қарағанда симметриялы түрлендіреміз.    (1-сурет)

 

 

 

 

—        -π         —        0                    π

1 сурет

б) у=sin |x| функциясының графигін салыңдар

Функцияның графигін салу үшін  у=sinx функцияның графигінің  Ох осінде одан жоғары жатқан бөлігін қалдырып,Ох-осіне төмен жатқан бөлігін Ох-осіне қарағанда симметриялы түрлендіре міз.     (2-сурет)

у

 

 

 

-2π       —        -π         —        0                    π                  2π          х

2 сурет

в) у функциясының графигін салыңдар

1 тәсіл.Функцияның графигін салу үшін  алдымен   у= -sin|x |функцияның графигін салып, оны

Ох осі бойымен  бірлік солға қарай ,ал одан соң Оу осі бойымен 2 бірлікке жоғары қарай параллель көшіреміз.

2 тәсіл.Берілген функцияның графигін  екі функцияның графиктерін қанағаттандырады:

  • Егер х+≥0,яғни х≥-болса, онда 2-sin(x+) 2)егер х+< 0,яғни х<- болса, онда

у=2-sin(-(х+))=2+sin (х+)  . Функцияның анықталу облысы бүкіл сан түзуі.

Функцияның  мәндерінің облысы: -1≤sin| х+|≤1немесе -1+2≤У≤1+2,  1≤У≤3.

Екі функциясының графигіне ортақ нүкте: х=-; y=-sin|0|+2=2 яғни: (-;2)  нүктесі.   (3-сурет)

 

 

 

 

у

 

 

 

 

 

 

 

 

 

-2π       —        -π         — —  0                    π                  2π          х

3 сурет

Г) у=  функциясының графигін салыңдар

Бұл функцияның графигін салу үшін   төменгі ретпен орындаймыз:ctgx→ctg2x→ctg2x→   Яғни, уфункцичсының графигін оңға қарай бірлікке параллель көшіреміз. Одан кейін шыққан графиктің Ох осінде  және одан жоғары жатқан графиктің бөлігін сол күйінде қалдырып, ал Ох осінен төмен жатқан бөлігін Ох осіне қарағанда симметриялы түрлендіреміз.

(4 сурет)

у

у=

 

 

 

 

0                                        π                                х

 

Ақтөбе облысы

Темір ауданы

Ж.Кереев атындағы орта мектебінің

ҚР білім беру үздігі,  математика пәні  мұғалімі

Нұрғалиева.Ж.І